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1. INTRODUCTION

The now used failure criteria for wood are not generally valid and consistent and
thus should not be used. The general valid approach was derived long ago [1] and
is as easy to apply as the now used approximations. The behaviour at “flow” and
failure is given in [6] in the main directions (see e.g. in general fig. 5.6 of [6]). From
this behaviour, the failure criterion could be derived. This however will give a
complicated formula of the failure surface and a simplification then is possible by
a polynomial expansion of that failure surface. This expansion of the failure sur-
face in stress space into a polynomial, consisting of a linear combination of or-
thogonal polynomials, provides easily found constants (by the orthogonality
property) when the expanded function is known, and the row can be extended,
when necessary for a higher precision, without changing the already determined
constants of the row. When choosing in advance a limited number of terms of the
polynomial, up to some degree, the expansion procedure need not to be perfor-
med, because the result is in principle identical to a least square fit of the data to a
polynomial of that chosen degree. This choice of the number of terms may depend
on the wanted precision of the expansion and on the practical use. The choice of
the number of higher order terms does not influence the values of the second and
first order terms and the quadratic polynomial part has a special meaning. The
third order terms represent special hardening effects and only a few of such terms
are necessary for a precise description of the strength of wood in longitudinal di-
rection. In the transverse direction, no higher order terms are needed and only the
second order polynomial is enough for a precise description [1] because hardening
leads to a less orthotropic (quasi isotropic) behaviour. The special property of the
quadratic form of the polynomial was discussed in [1] where it was shown to re-
present the critical distortional energy principle of yield. The mentioned simple
mathematical steps of the derivation were left out of the paper and are given here.
Based on this principle of a polynomial expansion of the real failure surface, a gen-
eral failure criterion, satisfying equilibrium in all directions, was for wood first
derived in [1] and the most important aspects can be found in that publication.
The in [1] given explanation of the existing criteria and the approximation of the
coupling terms like F,, are verified, e.g. in Madison [2], where it was shown that

Cowins approximation [12] does not apply for wood. As extension, the derivation
is given here (and in [7]) of an exact modified Hankinson criterion and of the gen-
eral form of the higher order constants and how the constants of the polynomial
can be determined from uniaxial off-axis tests in the main planes.

An extension of the method was given [3] by a general approach for anisotropic,
not orthotropic, behaviour of joints, (as punched out metal plates) and the simpli-
fication of the transformations by 2 angles as variables.

A confirmation of the results of [1] by means of coherent measurements (only in
the radial-longitudinal plane) and the generalization to an equivalent, quasi ho-
mogeneous, failure criterion for wood with small defects is given in [4]. These
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measurements also show a determining influence of hardening and oriented mi-
cro-crack propagation on the equivalent main strengths and the failure criterion of
wood. This follows from the theoretical explanation in [9] of the Wu fracture me-
chanics criterion for layered composites that is based on oriented (in grain direc-
tion) crack propagation of flat elliptic micro cracks in the matrix. It here is shown
that this Wu- (or Mohr-) criterion is also determining the failure criterion of wood,
showing the same oriented micro cracks to be responsible for failure in general.
The positive third order terms of the polynomial are shown to represent this hard-
ening effect due to micro crack arrest by strong layers.

It is shown that the, usually applied, von Mises- Hill- Hoffmann- Hankinson- and
Norris criteria are special forms of the critical distortional energy principle of yield
and are not generally valid. The Hill- and Norris- criteria only apply for materials
with equal compression and tension strengths. Only the Hoffmann criterion ac-
counts for different strengths. However the Hill- and Hoffmann criteria contain a
cyclic symmetry of the stresses in the quadratic terms, as applies for the isotropic
case what causes a fixed, not free, orientation of the failure ellipse in stress space
[1]. These criteria thus cannot be expected to apply generally for the orthotropic
case. The same prescribed orientation is given by the theoretical Norris equation,
being far from wood behaviour that shows a zero, or nearly zero, slope of the el-
lipsoid with respect to the main direction. This explains why the older empirical
Norris equation, with zero slope, that generally is applied for wood in Europe, is
less worst than the theoretical Norris equation.

Although the Norris criterion is prescribed in the Codes for wood, (but not is ap-
plied as should be by four different equations for the four normal stress quadrants
to account for the different strengths in tension and compression and the different
fictive shear strengths), the flow rule according to the Hill-criterion is proposed for
wood. More consistent this should have been based on the (corrected) Norris
equations. However the only right results are obtained by the exact method that
connects directly the strain rates of the general loading case to the deformation
kinetics rate equations [6], being the physical constitutive equations for wood and
other materials.

2. THE GENERAL FAILURE CRITERION FOR WOOD POLYMERS
2.1. General properties

A yield- or flow-criterion gives the combinations of stresses whereby flow occurs
in an elastic-plastic material like wood in compression. For more brittle failure
types in polymers with glassy components like wood at tensile loading, there is
some boundary where above the gradual flow of components at peak stresses and
micro-cracking may have a similar effect on stress redistribution as flow especially
for long term loading. It is discussed in [10] and later that these flow and failure
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boundaries may be regarded as equivalent elastic-plastic flow surfaces.

The flow- or failure criterion is a closed surface in the stress space i.e. a more di-
mensional space with coordinates o,,5,,05,0,,05,0;.

A cut, e.g. according to figure 2.1 through the plane of the coordinate axes y = o,
and x =c,, will show a closed curve and such a curve always can be described by
a polynomial in x and y like:

ax + by + o+ dy? + exy + £x3 + gy® + hx?y +ixy? + ....... =k (2.1)

".Gl
e~ |

tension is

positive

3

Figure 2.1. Failure ellipsoid and definition of positive stresses.

whereby as much as terms can be accounted for as is necessary for the wanted
precision. The surface will be concave because of the normality principle, and
higher order terms, causing local peaks on the surface (and thus causing inflection
points) are only possible by local hardening effects depending on the loading path
and are outside the flow-criterion. These effects can be treated (purely descriptive)
as given in [1] at: "2.2. Hardenings rules", or by the approach of [10].

It can also be seen that the constants f and g are indeterminate and have to be
taken zero because, for y =0, eq.(2.1) becomes: ax + cx? + £x* = k, having the real
roots

Xy, —X;, —X, and thus can be written:

(x—xo)-(x+xl)'(x+x2):0 (2.2)
Because there are only two points of intersection possible of a closed surface with
a line, there are only two roots by the intersecting x-axis e.g. x =x, and x = - x,

and the part (x + x, ), being never zero within or on the surface and thus is inde-

terminate, has to be omitted. For a real concave surface f thus is necessarily zero.
The same applies for g: g = 0 following from the roots of y when x =0.

The equation can systematically be written as stress-polynomial like:

Eo; +F.0,0; +Fijkcicsjcsk F o =1 (1j,k=1,2,3,45,6) (2.3)

§2i0]

In [1] it is shown that clear wood can be regarded to be orthotropic in the main
planes and the principal directions of the strengths are orthogonal (showing the
common tensor transformations) and higher order terms, that are due to harden-
ing, normally can be neglected so that eq.(2.3) becomes:

Fo,+Foo, =1 (,j=1,2 3 4,5,6) (2.4)

jrivj
In [10], and as discussed later, it is shown that this equation represents the critical
distortional energy of failure.
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In eq.(2.4) is, for reasons of energetic reciprocity, E; =F; (i # j) and by orthotropic

symmetry in the main planes (through the main axes along the grain, tangential
and radial) there is no difference in positive and negative shear-strength and
terms with uneven powers in o, thus are zero or: F; =E,, =F, =0; and there is no

interaction between normal- and shear-strengths or: F;= 0 i#j 1j=47506).
Thus eq.(2.4) becomes for a plane stress state in a main plane:

Fo, +Fo, + 0} +2F,0,0, + F,,0; + Fo; =1 (2.5)
For a thermodynamic allowable criterion (positive finite strain energy) the values
E, must be positive and the failure surface has to be closed and cannot be open-
ended and thus the interaction terms are constrained to:

FFy> ) (2.6)
(F,F,, = F gives a parabolic surface and F,F,, < E} is hyperbolic)

For the uniaxial tensile strength ¢,=X (o, =0, =0) and eq.(2.5) becomes:

Fo,+F,0;f =1 or: EX+F,X* =1 (2.7)
and for the compression strength c,=- X’ this is:
~EX'+F,X"? =1 (2.8)
and it follows from eq.(2.7) and (2.8) that F and E, are known:
1 1 1
F=—-— and F, =—— 2.9
T T MR Ty 29)
In the same way is for o, =6, =0, in the direction perpendicular:
I 1 1
FE=—-— and F, =—— 2.10
27y Y 2=y (2.10)
Further it follows for o, =5, =0 (pure shear), for the shear strength S, that:
1
Fy = & (2.11)
and according to eq.(2.6) is: —1/VXX'YY' < F, < +1/vXX'YY' (2.12)

It can be shown (as discussed in [1]) that the restricted values of 2F,, based on
assumed coupling according to the deviator stresses, as given by Norris [13], Hill
or Hoffmann [14] as: 2F, =-1/2XY, or: F, =- (1/X2 +1/Y% -1/ Zz) are not general
enough for orthotropic materials and don’t apply for wood. There also is no rea-
son to restrict F, according to e.g. Tsai and Hahn [15] as: 2F, =1/vXX'YY"' or
according to Wu and Stachurski [16] as: 2F, ~ - 2/XX'. These chosen values sug-
gest that 2F, is ~ 0.2 to 0.5 times the extreme value of eq.(2.12).

The properties of a real physical surface in stress space have to be independent on
the orientation of the axes and therefore the tensor transformations apply for the
stresses ¢ of eq.(2.5). These transformation are derivable from the equilibrium of
the stresses on an element formed by the rotated plane and on the original planes,

or simply, by the analogous circle of Mohr construction. For the uniaxial tensile
stress then is:
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G,=0,c0s°0  ©,=0,sin’0 Gy =G, cosOsin 0
Substitution in eq.(2.5) gives:
Fo, cos® 0+F,o, sin” 0+F, o} cos* 0+ (2F,, + F, )o. cos” Osin* 0+ F,,o. sin*0=1 (2.13)
and substitution of the values of F:
o, cos’ e(i —Lj +0, sin® 6(l —Lj —i——Gt2 cos* + 2F12<5t2 sin” O +—Gt2 sin” 0 +
X X Y Y XX!' YY'

o} cos” Osin® 0

= 1 (2.14)
It can be seen that for 0 =0 this gives the tensile- and compression strength in e.g.
the grain direction: 6, =X and o, = -X', and for 0 =90°, the tensile and compres-

sion strength perpendicular to the grain: 6, =Y and o, =- Y', and that a defini-

tion is given of the tensile and compression strengths in every direction. These are
the points of intersection of the rotated axes with the failure surface. Eq.(2.13) thus
can be read in this strength component along the rotated x-axis: 6, = o, according

to: F',o,+F of =1 (2.15)
and eq.(2.13) gives the definition of the transformations of F', and F'|,. The same
can be done for the other strengths. The transformation of F'; thus also is a tensor-
transformation (of the fourth rank) that follows from the rotation of the symmetry
axes of the material. Transformation thus is possible in two manners. The stress-
components can be transformed to the symmetry directions according to eq.(2.5).
Or the symmetry axes can be rotated, leaving the stresses along the rotating axes
unchanged. For this case the general polynomial expression eq.(2.16) applies:

F' 6, +F,0,+F' 0 +2F',6,6,+F',, 05 +F' 6,6, +F', 6,6, +F';, 6t =1 (2.16)

These transformations of F' are e.g. given in [1].

2.2. Initial yield criterion and derivation of the Hankinson and extended
Hankinson equations

As will be discussed later, eq.(2.5) or eq.(2.14) for the off-grain-axis tensile- and
compression strengths, represents the initial yield condition, being the extended
critical distortional energy principle.

This "initial yield" equation, eq.(2.14), can be resolved into factors as follows:

2 -2 2 : 2
G, COS 9+Gtsm 6_1 | o, cos 9+ctsm 9+1 _0 (2.17)
X Y X' Y

giving the product of the Hankinson equations for tension and for compression,
(where X and X’ are the strengths in grain direction). This is possible when:

2F, +1/8* =1/X'Y +1/XY" (2.18)
In this equation, derived in [1], (1/X"'Y +1/XY") is of the same order, and thus
about equal to 1/ S? so that 2 E, is of lower order with respect to 1/ S?. In [2]
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eq.(2.18) was used as a measure for F, what is a difference of two higher order

quantities and thus can not give a precise information of the value of E,, that also

can be neglected as first estimate. In [5], wrongly the sum of 1/S* and

(1/X'Y +1/XY") is taken to be equal to 2 F,,, being of higher order with respect to

the real value of 2F, and it evident that this value did not satisfy eq.(2.12).

Eq.(2.17) shows that the exponent “n” of the generalized Hankinson formula

eq.(2.19):

o, cos" 0 L O sin” 0 _
X Y

is: n = 2 for tension and compression at initial yield when there are no higher order

1 (2.19)

terms. A value of n, different from n = 2 thus means that there are higher order
terms due to hardening after initial yield as in eq.(2.21).

The initial yield criterion eq.(214) or eq.(2.17), being the extended critical distor-
tional energy principle, should satisfy both the elastic and the yield conditions at
the same time. Because the Hankinson equation with n =2 also applies for the ax-
ial modules of elasticity and because this modulus is proportional to the strength,
the Hankinson equations with n =2, eq.(2.17), satisfies this requirement. Thus after
some strain in the elastic stage, the initial yield is reached and because the modu-
lus of elasticity follows the Hankinson equation with n = 2, also the yield criterion,
eq.(2.17), containing the Hankinson equations, follows this and has the quadratic
form and no higher order terms. This also is measured. It is mentioned in [8], that
for glulam and for clear wood in bending and in tension, n = 2. The combined
compression with shear tests (of Keylwerth by the "Schereisen", allowing only
shear-deformation in one plane) show that for off-axis longitudinal shear, also in
the radial plane, n = 2, showing no higher order terms for the shear strength. Ac-
cording to fig. 2.3 this also applies for the tangential plane, but not for the radial
plane. The value of n thus depends on the type of test and it is mentioned e.g. by
Kollmann that n ~ 2.5 for compression of clear wood, showing that hardening
was possible in the tests and the third order terms of the yield criterion are not
zero [10]. The test method of [4] shows that F,,, F, and F,¢ for the radial plane

have an influence, what is shown here to be the hardening effect due to crack ar-
rest and due to confined dilatation. Thus the test method (early instability or not)
has influence on whether only initial yield

(n = 2), or a more stable failure will occur (n different from n=2). Whenn # 2,
higher order terms are not zero in the failure condition and eq.(2.21) applies.

An equation of the fourth degree (eq.(2.21) in c,) can always be written as the pro-

duct of two quadratic equations, eq.(2.20). For a real failure surface the roots will
be real and because the measurements show that one of the quadratic equations is
determining for compression and the other for tension and must be valid for zero
values of C, and/or C; as well, this factorization leads as the only possible solu-

tion to be the product of extended Hankinson equations for tension and compres-
sion as follows:
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2 22 2 .2
G, COS 9+Gtsm e—1+cfsin2600526-ct .(GtCOS 6+Gtsm 9+1+
X Y X' Y'
+o. sin29~c0529.Cd) =0 (2.20)

Performing this multiplication, eq.(2.20) thus is in general:

Fo, cos’ 0+Fc, sin’ 0+F, o} cos* 0+(2F,, + Fy )o; cos” 0+ Fy,0; sin® 0+3(F, +

+F45 )0, cos* 0-sin® 0+ 3(F,,, + Fyq ) o, sin” 0-cos” 0 +12F, 507 cos* sin* 0 =1 (2.21)
giving the applied criterion in [4], where it appeared that F,,, and other possible
higher order terms can be neglected except F,.

The values C, and C; can be found by fitting of the modified "Hankinson equa-
tions" eq.(2.20), for uniaxial off-axis tension and compression giving the constants:
2F, =1/X'Y+1/XY'-1/8* +C,—Cy;  3(F, +F)=C,/X"+Cy/X;

3(Fp +Fy)=C,/Y+Cy/Y; and 12F,, =C,Cy—12F,, ~C,Cq (2.22)
A fit of the Hankinson power equation, eq.(2.19) always is possible and different n
values for tension and compression from n =2 in that equation means that there
are higher order terms and that C, and C; are not zero, as follows from eq.(2.20).
For timber with defects and grain and stress deviations, the axial strength is de-
termined by combined shear and normal stress perpendicular to the grain. This
may cause stable crack propagation and a parabolic curve of the effective shear
strength (according to the Mohr- or Wu-equation, eq.(2.32) with c=1) given by a
third order term. For timber n can be as low asn = 1.6 in eq.(2.19) for tension,

showing higher order terms to be present. This also follows from n = 2.5 for com-
pression. The data of [4], show thatF, F,,c and F, of the radial plane have in-

fluence what can be explained by an equivalent hardening effect due to crack ar-
rest (see fig. 2.8, 2.7 and 2.6, showing parabolic like curves, different from elliptic
curves of order 2 of fig. 2.5).

Thus the extended Hankinson equations, eq.(2.20) apply when in eq.(2.19) n <2 for
tension, and n > 2 for compression.

It was shown in [1] that F, is small and can not be known with a high accuracy.
Small errors in the strength values (X, X', Y, Y’, S) may switch F, from its lower
bound to its upper bound, changing its sign and the value thus is not important
and thus negligible for a first estimate. The data of [4] of the principal stresses in
longitudinal tension, being close to initial yield, indicate F, to be zero at initial
yield, thus when C,;=C,=0 and thus when:

1/S*=1/X'Y +1/XY" (2.23)
Then eq.(2.22) suggests that: 2F, =C, -C, (2.24)
when C, and C; are not zero. This is tested here in the following and it appears

that, because F, =0 for longitudinal tension, S follows from:
1/8* =1/X'Y +1/XY'+C, - C,
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according to eq.(2.22) and S should not be measured separately by a different type
of test, but follows from the uniaxial off-axis tension- and compression tests.
Because E,,, is negligible, is, according to eq.(2.22): 12EF,, = C, C,

what also is small and negligible, as will be shown later.

F ¢ will have a similar bound for F, as follows from eq.(2.32) what is given in

fig. 2.3, and follows by replacing the index 2 by 1 and Y by X. However the deter-
mining bound of F, follows from eq.(2.22), when F,;, is known. A general

method to determine this bound of F, is given in [1], (for E, ). For the purpose

here, the following approach is sufficient:
The upper bound of F;, becomes determining when o, =0 and because for longi-

tudinal compression, F,, is small (according to eq.(2.22)) because F,;; dominates,

the following equation applies:

11 1 1Y) o o )
6| =——— |+0y| =——— |+ ——+—+3EF,0,0; =1 2.25
I(X X'j Z(Y Y'j X' YY' 1129291 ( )
This can be written:
o (X'=X)+o7 (1+3F,,0,XX")=(1-0,/Y)-(1+0,/Y")- XX (2.26)

The critical value of F,, to just have a closed surface, will occur at high absolute
values of o, and o,, thus in the neighbourhood of o, ~—X". Inserting safely this

value in the smallest term of eq.(2.26) gives:
o7 (1+43F ,0,XX "+ (X'=X)/(-X")) = (1-0,/Y)-(1+0,/ Y')- XX

or: i:\/(l—cz/Y)-(l+62/Y') where ¢ =3F,,Y'X" (2.27)
X' l+co,/Y'

Thus when c =1, the curve reduces to a parabola and the requirement to have a

closed curve is c< 1. Thus: 3F,, <1/Y'X". (2.28)

More general when F, and F,, are not negligible, the bound: ¢ <1 becomes:

c~3F ,X?Y'-2EF,Y'X"+3F,, Y X'<1 (2.29)

for longitudinal compression, where besides o, ~ -X', also 6, =Y is substituted

in the contribution of the smallest term, as assumed determining point to just have
a closed surface.

The same could be expected to apply for longitudinal tension, giving the same
equation (2.27) with X’ replaced by X. However, because of an other type of fail-
ure, F, and E,, are zero for longitudinal tension, see fig. 2.5 that is an ellipse,

thus a second order equation, according to eq.(2.25) with F;, =0.

The found (cut-off) parabola eq.(2.27) (for c close to ¢ =1) is, as eq.(2.32), equiva-
lent to the Wu-fracture equation for shear with tension or compression perpen-
dicular. For wood in longitudinal compression, this failure mechanism acts in the
radial plane, giving high values of E,;, and F, close to their bounds of c = 0.8 to
0.9. Because for wood with defects there always are deviations of the stress or of
the grain from the regarded main directions, there always is combined shear-
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normal stress loading in the real material planes where eq.(2.32) applies and E,
probably is an apparent value caused by FE,; of the real inclined material planes.

In order to have one overall criterion for the different failure types of longitudinal
tension and compression and thus in order to connect the longitudinal tension re-
gion, where F,,, F, and F,, are zero, when this region is separately fitted, to the

longitudinal compression region, where F,, dominates, it is necessary to use the
higher order terms as F,,,, F,,, and F,,,. These terms thus have no physical

meaning and are due to the different types of failure in the different regions. For
tension, the early instability of the test by splitting determines the strength, while
for compression the late instability after hardening defines failure. It thus is neces-
sary to fit both regions separately and not to apply one overall criterion.

With the estimates of F,,, and F,,, to be close to their bounds for compression,

and with zero normal coupling terms for tension, all constants of the general fail-
ure criterion, eq.(2.21) are known, according to eq.(2.22), depending on C; and C,

from uniaxial off-axis tension and compression tests.

Performing always the stress-transformation to the main planes, as done here,
only simple transformation rules (circle of Mohr construction) have to be known
for application.

2.3. Transverse strengths

In [1] it is shown that for rotations of the 3-axis, when this axis is chosen along the
grain, eq.(2.5) and (2.16) may precisely describe the peculiar behaviour of the com-
pression- tension- and (rolling) shear-strength perpendicular to the grain and the
off-axis strengths without the need of higher order terms. The measured lines of
the off-axis uniaxial transverse strength of fig. 2.2, follow precisely from eq.(2.15):
Flio+F o] =1

When for compression the failure limit is taken to be the stress value after that the
same, sufficient high, amount of flow strain has occurred, then the differences be-
tween radial- tangential- and off-axes strengths disappear and one, directional in-
dependent, strength value remains (see fig. 2.2). For tension perpendicular to the
grain, only in a rather small region (around 90°, see fig. 2.2) in the radial direction,
the strength is higher and because in practice, the applied direction is not precisely
known and needs not to be the weakest plane, a lower bound of the strength will
apply that is independent of the direction. The choice of these limits means that:
FE-F =0and F,-F, =0

and that also F, is limited according to:

2F, =K+, —Fg

Further then also is:
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F'.=0 and F' =F,=1/1 (2.30)

rol

From measurement it can be derived that F, is small leading to:

F =K, +FE, or 1., isbounded by:

rol

T, =XXV2=YY"2 (2.31)

rol —

and the ultimate behaviour can be regarded to be quasi isotropic in the transverse
direction.

The measurements further show for this rotation around the grain-axis that the
"shear strengths" in grain direction in the radial- and the tangential plane, F,, and

F;s, are uncoupled or F,5 =0, as is to be expected from symmetry considerations.

2.4. Longitudinal strengths

When now the 3-axis is chosen in the tangential or in the radial directions, the
same relations apply (with indices 1, 2, 6) as in the previous case. The equations
for this case then give the strengths along and perpendicular to the grain and the
shear-strength in the grain direction.

In [1] it is shown that this longitudinal shear strength in the radial plane increases
with compression perpendicular to this plane according to the coupling term F,,

(direction 2 is the radial direction” direction 1 is in the grain direction):

E,6, +E),0; + FiG¢ +3F,5,0; =1 or: S _ (120, /Y)- (10, /¥) (2.32)
S l+co,/Y'
with: ¢ = 3F,,Y'S* ~ 0.9 (0,8 to 0.99, see fig. 2.3).
When c approaches c = 1 (measurements of project A in fig. 2.3), eq.(2.32) be-
comes:
5, ) o
(—6J +—2=~1 (2.33)
S Y

10
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being the Wu-equation of fracture mechanics for mixed mode I - II failure. This
equation (2.33) can fully be explained by oriented micro-crack propagation [9]. As
derived in [9], this equation does not only apply for tension with shear but also for
shear with compression &, perpendicular to the flat crack. For a high stress o, the
crack is closed at 6, = 6, and the crack tip notices only the influence of &, = o,
because for the higher part of c,, the load is directly transmitted through the

closed crack and eq.(2.33) becomes:

O¢ _M(02_Gc) O
-2 ey 1-—< or: o,=C+pulo 2.34
S S Y 6 kio, | ( )

where 6, and o, are negative, giving the Coulomb-equation with an increased
shear capacity due to friction: p|oc, |. However, inserting the measured values of

[4], it appears that the frictional contribution is very small. The micro-crack closure
stress o, will numerical be about equal to the tensile strength: 6, ~ - Y. The shear

strength will be maximal raised, at high compression of 6, ~ - 0.9Y’, by a factor:
(1+1(09Y = Y)/8V2) = (1+0.3(0.9-5.6-3.7)/9.8:4/2) =1.03

Thus the shear strength with compression is mainly determined by an equivalent
hardening effect, caused by crack arrest in the critical direction by the strong lay-
ers. At higher o, stresses, compression plasticity perpendicular to the grain (pro-

ject A of [11], see fig. 2.3), or instability of the test (project B of [11] with oblique-
grain compression tests) may become determining, showing a lower value of c of
eq.(2.32) thanc=1.

Because the slopes of the lines (at small c,) of project A and B of [11] are the same,
there is no indication, for clear wood, of an influence of the higher order terms:
E,,, E, and F of project B. Further, the line of B is below the line of A and the

c-value of B is lower, closer to the elliptic failure criterion. This is an indication
that hardening after initial yield (thus departure from the elliptic equation) of pro-
ject B, the oblique-grain compression test, is less than that of project A and thus
that the test is less stable. (Project C of [11] follows the elliptic failure criterion be-
cause of the influence of transverse failure due to rolling shear that is shown be-
fore to be elliptic).

The bridging, crack arresting layers are not present in the tangential plane and be-
cause there thus is no influence of E;,s in the tangential plane, what is the equiva-

lent value of E,¢, of the radial plane, F,., of the radial plane diminishes quickly at

axis-rotation (around the 2-axis), and this higher strength effect is only a local ef-
fect, only noticeable when loading is in the neighbourhood of the radial plane.
The high value of E,(, (measured with o, =0), indicates that for clear wood, F,,
will be negligible in the radial plane according to eq.(2.22). It also follows from
published Hankinson lines of clear wood that F,, and F,; may be zero in the tan-
gential plane, confirming the results of projects A and B of [11], mentioned before.
The Hankinson lines withn ~ 2 in eq.(2.19), show all higher order terms to be

11
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zero. There is an indication that this is a general property of timber [11], because
when shear failure is free to occur in the weakest plane, as usually in large timber
beams and glulam, it occurs in the tangential plane and n =2, showing no higher
order terms.

. Y * 'Y rad. plane

b
S 1' ./: { ¢=099
i .
1

. :

rad. planA l project

I - o c=0.9 '\ . o [11]-B
. \\ C o [11]-A

2\
|t e 0918y

| -

+650 =X - 200 -1300 psi

tanl\g. plane

b—— — - - - - =

) S S

L ]

Figure 2.3 - Combined shear-tension and shear-compression strengths.

2.5. Estimation of the polynomial constants by uniaxial tests

Based on data fitting of uniaxial tension- and compression tests of [4], the values
of C; and C, are determined and by eq.(2.22) the polynomial constants. This is

compared with the data and fit of the biaxial measurements of [4].
In fig. 2.4, a determination of C; and of C,is given. In this figure of [4], the com-

pression- strength perpendicular to the grain measurement Y’/X" = 0.204 is re-

duced to obtain a value of Y’/X" =0.13 (at 90° ) to be able to use the measured con-

stants of the bi-axial tests. It is not mentioned how that possibly can be done but

the drawn lines in the figure give the prediction of the uniaxial values based on

the measured constants according to the general eq.(2.21) (given in [4] in the

strength tensor form as given here by eq.(2.15)). For comparison the fits of the

Hankinson equations are given following these drawn lines.

For tension the extended Hankinson equation (2.20) becomes (by scratching the

non zero term of the product:

G, cos* 0 Lo sin® @
X

and this equation fits the line for tension in fig. 2.4 when C, ~11.9/X*. The Han-

+o;sin*0cos’0-C, =1 (2.35)

kinson equation (2.19) fits in this case for n = 1.8 and all 3 equations (2.21), (2.35)
and (2.19) give the same result although for the Hankinson equations only the
main tension- and compression strength have to be known and the influence of all
other quantities are given by: n or by C,.

12
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1.1}

1.0

09t data theory

a compression compr.

0.8} -~~~ —eq.(2.19); (2.21); (2.36)

e tension
0.7

tens.

eq.(2.19); (2.21); (2.35)
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0.0
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Figure 2.4 - Uniaxial tension- and compression strengths

For compression, the same line as found in [4] was found in [1], (see fig. 11 of [1]),
by the second order polynomial with the minimal possible value of F, (according

to eq.(2.12)), showing that except a negative F,, (as used in [4]) also a high nega-
tive value of F, may cause the strong peak at small angles. Because such a peak

never is measured, the drawn line of [4] is only followed here for the higher angles
by the Hankinson equation. For the small angles, the line (dashed) is drawn
through the measured point at 15°, giving the expectable Hankinson value of
n=2.41in eq.(2.19) and for eq.(2.36): C, ~4/X". Because of this low measured
value, the predicted peak at 10° in fig. 2.4 is not probable, although the peak-factor
of 1.1 is theoretically possible, for high shear strength, to occur at 18° in stead of
10° with C, =7.6/X" in the extended Hankinson equation (2.36):

G, cos’ 0 Lo sin® @

X' Y'

This shows that the fit of the polynomial constants, based on the best fit of the
measurements of [4], is not well for the oblique grain test. The explanation of this
deviation is probably the different state of hardening of the data that can be more
or less strong, depending on the stability of the type of test what is less in the Han-
kinson test. This, for instance, follows from the ratio of the compression strengths
perpendicular to the grain and along the grain of 0.2 in the uniaxial tests and 0.1 in
the biaxial tests showing more hardening in the biaxial tests. Further the strong
local peak is never measured in the common oblique grain test, showing less sta-
bility than in the biaxial test.
An analogous behaviour occurs in the oblique grain test of clear wood where the

+67sin’Bcos’0-C, =1 (2.36)
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tensile test shows C, =0 in eq.(2.20) and the compression test may show C; to be
not zero. A zero value of C, indicates no higher order terms and thus C; should

be zero. However the tensile test shows unstable failure at yield what needs not to
be so for the compression test that may show additional hardening. Thus the crite-
rion eq.(2.20) with only C, =0 may show two different hardening states. For the

different hardening states in the different possible types of tests, the lowest always
possible value should be used for practice thus C, =C; =0.

It thus has to be concluded that the strong hardening in the biaxial test will not oc-
cur in all circumstances and the hardening parameters should be omitted for a safe
lower bound criterion (in accordance with the oblique grain test).

As generally found in [1] for spruce clear wood, a fit is possible for off-axis tension
by a second order polynomial with F, =0. This also applies for wood with de-
fects, as follows from a fit of the data of [4] by the second order polynomial (el-
lipse) in the principal stresses o, and o, (o, =0), for longitudinal tension (o, >0;
E, =0), see fig. 2.5. This means that F,;, and F,,, are zero (for o, >0) in the radial

plane and because the Hankinson value for tension n is different from n = 2, there

4 -

r
adiaaalaas

80

o, (radial plane)
&
(@]

—— theory

) data (mean of 3)

0. {longitudinal compression)

Figure 2.5 — First yield criterion eq.(2.5), with F, =0, for o, =0.

must be higher order terms for shear (F, F)-

A first hypothesis thus is by eq.(2.22):

3E =C,/Y"; 3F =C, /X', (with F,, =F,, =0) for tension and:

3F¢ =Cy/Y and 3EF,, =C, /X, (with F, =E,; =0) for compression.

This assumption gives maximal values for F,, and F,,, for the total fit of all data.
The strength values according to this fit of [4] are (in N/mm?):

X =59.5; X" =46.5; Y =3.5; Y =5.9: S ~ 10 and with: C, =11.9/X*; C, =4/X";

2F, = C, —C,, the predicted values are given in table 1 at column: hyp.1. It is seen

that these values fit better than the best values of the comparable eq.(62) of [4],
given in the column indicated with [4]. However for o, =0, F,, must be negative

for a precise fit when o, <0 and about zero when o, >0, showing that F ,, has got

14
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the function to replace neglected still higher order terms, and a precise fit only can
be expected to be possible with multiple higher order terms (with indices 1 and 2).
As mentioned in [4], the values of o, can be corrected by F ¢, to be slightly lower

when the sign of o, and o, is the same and to be slightly higher when the sign is

opposite. This means that the first and third row-value of column: hyp.1 (being 1.1
and 1.0) can be around 1.05. This shows that introduction of F, only gives a local

correction of a few percent and justifies the negligence of F,.,. The column values
further are slightly too high when &, >0 and too low for o, <0, indicating that

E 4 is not precise. Neglecting the multiple higher order terms, the hypothesis has
to be rejected, because E,, is too high, distorting the ellipse (at 5, > 0) too much
for high negative values of o, and causing the surface to be open at 5, <0 and at
high negative o, . It thus has to be concluded that C, and C; are coupling terms

between tension and compression and that the different types of failure in longi-
tudinal tension and in compression should be given in separate failure criteria for
these cases. Without the other higher order terms, F,, has to satisty eq.(2.28) and

the highest possible positive value of F,, becomes about 0.0001, being 5 times

smaller than according to the first hypothesis. The fit now, with this small positive
value of F,,, is about comparable with the best fit of [4] (that is based on a nega-

tive value of F,,), but now satisfies eq.(2.22) and will not show the compression

peak in the Hankinson test (fig. 2.4). The fit is in total not better than a fit with
changed constants and is also in total not better than assuming F,, F,, and F, to

be zero for o, > 0. This leads to the second hypothesis, that the higher order terms
for normal stresses are small at fracture (close to initial yield behaviour when o, >
0) and thus can be neglected for a criterion in practice.

In table 1, column hyp. 2, the fit is given for F, =E,, =F,, =0. Because the fit does
not change much when data above the uniaxial compression strength: X" =41.7 are
neglected, the fit is based on this value and column hyp.2 thus gives the prediction
of failure by the same hardening state as in the oblique grain test (where the
strong compression hardening does not occur). The constants are:
C,=119/X*>=11.9/59.5" =0.00336; C,=4/X"=4/41.7>=0.00230 and by
eq.(2.22):

3F6 =C,/Y'+C,;/Y =0.00332/5.95+0.0023/3.5=0.00122 or cofeq.(2.32)is:

Cpee =0.00122-9.7>-5.95=0.68 and:

3F 4 =C,/X'+Cy/X=0.00336/41.7+0.0023/59.5=0.000119, or:

Cie6 =0.000119-9.7%-41.7 = 0.47 .

K :L—Lz 1/59.5-1/41.7=-0.0072; E, :Lzl/(59.5-41.7) =0.00040,
X X XX

F2:l—i=1/3.5—1/5.95:0.092; Fzzszl/(3.5-5.95):0.048 and:
Y Y' YY'
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1

F, =§:1/9.72 =0.0106; F,=F,,=F, =0.

This also applies as a lower bound for longitudinal compression (see fig. 2.5). For
longitudinal compression, the torsion tube test for the principal stresses (o, = 0;
o, <o) shows a parabolic curve in the radial plane, close to the Wu-equation,
showing F ,, to be high. This parabolic curve is given in fig. 2.6.

For comparison of the results, the strength values of the best fit of all data of [4]
are regarded for longitudinal compression:

X=55.5; X'=43.1; Y=3.7,;Y =5.6. The shear strength S=10 is too high, as fol-
lows from:

1/S* ~1/X'Y +1/XY '+ C, —Cy - 2F,, =
1/(43.1-3.7)+1/(55.5-5.6)+0.00386 —0.00215+0.0014 =0.0119,

giving S=9.4. For the constants now is:

K :L—L:1/55.5—1/43.1 =-0.0052; K, =L=1/(55.5-43.1):0.00042;
X X XX

E, =l—L:1/3.7—1/5.6:O.092; E, :L:I/(3.7-5.6):O.048.
Y Y YY'

Further is:
C,=11.9/X*=11.9/55.5* =0.00386 and C,=4/X" =4/43.1> =0.00215.

As mentioned, F,,; and E,, will be high, close to their bonds giving:
3By =0.9/87Y'=0.9/(9.47-5.6) = 0.00184

and according to eq.(2.22):
3K, =C,/Y'+Cy /Y —3F, =0.00386/5.6+0.00215/3.7-0.00184 = — 0.00057

3F,, =0.9/(5.6-43.1) = 0.000086 and consequently 3F,s =0.000042 with:
2F,, =—0.0014.

This gives the best fit for o, = 0. However for combined shear with normal

stresses, given in table 1, column 3-compr. the values are comparable with those of
column [4] and not well enough, also not for practice.

A better fit for the shear strength is obtained by a slightly reduced factor 0.8 in
stead of 0.9 for F,, thus with less hardening, similar to the oblique grain test proj.

B of fig. 2.3, giving:

3F,,, = 0.8/(5.6-43.1) = 0.000077;

3F, =C, /X'+Cy /X —3F,, = 0.000128 —0.000077 = 0.000051,

giving the c-values: ¢;i = 0.000051-9.4*-43.1=0.2 and: c,, = 0.9 (starting point).

These combined shear strengths are given in table 1, column 4 (compression fit),
and it is seen that the fit is better than the foregoing column. For o, =0, the fit is

given in fig. 2.6 for compression.
For longitudinal compression eq.(2.21) becomes:
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2 2 2 2 2
Fo, +FEo, + K07 +2K,0,0, +F,,0; + F04 +3F ,0,0, +3F,,050, +

(2.37)

Because the C,, C; and n-values of the Hankinson equations are sufficiently close

to the published extreme values of n, the here calculated c-values can be used in

o, (longitudinal compression)

o, {radial plane)

theory

Y data {mean of 3)

Figure 2.6 — Yield criterion for compression (c,<0) for o, =0.

Table 1. Shear strength o, for combined normal stresses

o, o, o factor: Gé.theory | Tt test
test [4] hyp. 1 hyp. 2 3 4
tens. compr. | compr.

30 1.5 5.8 1.07 1.10 1.03 0.90 1.02
30 0 8.5 0.88 0.97 0.91 0.77 0.92
30 -2.5 7.9 0.99 1.00 1.10 0.91 1.29
7.3 0 9.2 1.04 1.07 1.03 0.96 1.01
0 2.9 3.7 1.38 1.25 1.13 1.39 1.19
0 1.5 8.5 0.96 0.95 0.89 0.93 0.86
0 0 9.0 1.11 1.11 1.08 1.04 1.04
0 -2.5 10.9 0.96 0.98 1.05 0.86 1.07
0 -54 6.8 0.53 0.82 1.12 0.45 1.12
-7.7 0 9.6 1.05 1.04 1.01 1.03 0.96
-20 1.5 7.7 0.84 0.89 0.83 0.93 0.68
-20 0 9.6 0.99 0.98 0.96 1.10 0.88
-30 -2.5 11.3 1.04 0.98 0.90 1.16 0.94
mean factor 0.99 1.01 1.0 0.96 1.0

general and inserting F-values in eq.(2.37), this equation becomes:

2
G—;-(1+0.9-2+0.2oﬁ]=( —ﬁj~(l+ﬁj+[l—2)£1+2j+
S Y' X' X X' Y Y'
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2 2
1408222 _0.77. 2192 _041. 2% (2.38)
Y'X' X'y X'Y'

For longitudinal tension (5,2 0), eq.(2.21) becomes:

2
06 1140.68-22 404721 | =120 L1420 |4 [ 1-22 1422 | (2.39)
S Y X' X X' % Y'
<
[+
Q
L
(4]
®
=
3
g
S
© ® data
theory
[ T L T T i' v T T 7T l' L 73 T I L4 L 4 ¥ T rl La T L4 ]' L L4 rﬁ
€0 <40 -20 0] 20 40 60

0, (longitudinal compression). g, = 0

Figure 2.7 — Combined longitudinal shear with normal stress in grain direction.
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0, (compression in the radial plane) o, =0

Figure 2.8 - Longitudinal shear strength (o, = 0) depending on the normal stress.

Because the compression hardening according to eq.(2.38) occurs for low values of
o, only, and only in the torsion tube test in the radial plane, eq.(2.39) more gener-

ally represents the failure criterion for both tension and compression for the more
common failure case when n # 2. Neglecting the local higher compression
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strengths in the radial plane above the uniaxial compression strength, at o, =0,

also the overall fit by this equation is very well and even better than the proposed

fit of [4].

For tests and structures, showing early instability at failure, the higher order terms
may be zero, causing the Hankinson value of n = 2 for timber and glulam. Because
this is to be expected in most situations, the determining criterion becomes:

% (1_9) (129 (1_% (1.9 ).
g2 X X! Y Y' ’

or worked out, identical to eq.(2.5) with F, =0:

2 2 2
e S

$ X X' XX'' Y Y YY
It therefore is necessary to use eq.(2.40) in the Codes in all cases for timber and
clear wood to replace the now commonly used, not valid Norris-equations.

This criterion is a critical strain energy condition of the reinforcements leading to

=1 (2.40)

eq.(3.9) for equal tension and compression strengths and to eq.(3.11) with F, =0,

for wood. Because the increase of the strain energy of a loaded body due to crack
extension is equal to the apparent surface energy o per unit area of a crack with

area ct, this condition:

ag(W —4oct) =0 leads to: W, =a/(nc), where W, is strain energy of the un-
c

cracked body. For uniaxial tension this is: o; /2E = a./(nc), giving the Griffith

strength: 6, =v2Ea/nc

In this case here, TW, /(a/(nc)) =1 gives eq.(2.40). This only is possible when slip

of the reinforcement due to cracking, occurs at all stress levels and when there are
2 interacting crack systems in the 2 reinforcement directions for plane stress, that
interact for failure.

3. DERIVATION OF THE CRITICAL DISTORSIONAL ENERGY PRINCIPLE

3.1 Yield criterion.

A yield- or flow-criterion gives the combinations of stresses whereby flow occurs
in an elastic-plastic material. For more brittle failure types in polymers with glassy
components like wood at tensile loading, there is some boundary where below the
behaviour is assumed to be elastic and where above the gradual flow of compo-
nents at peak stresses and micro-cracking may have a similar effect as plastic flow
with hardening (like metals with gradual plasticity and no yield point).

The loading, damage and hardening behaviour up to failure can fully be described
by deformation kinetics [6]. There are several processes acting causing early local
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flow and stable micro-crack propagation, while the main part of the material is
elastic and different inelastic strain rate equations are necessary depending on the
loading type and material zone.

The failure criterion depends on the ultimate damage process and failure occurs
when the standard test becomes unstable.

3.2. Critical distortional energy

The initial yield criterion gives the boundary where below the behaviour is elastic.
When loaded very quickly this boundary also can be high, not very far from the
by standard tests defined failure surface and the criterion may also represent a
lower bound of the failure criterion. The same applies for wood with small defects,
showing early failure. The axial loading behaviour then often can be regarded to
be linear elastic up to failure.

Because an isotropic matrix of a material may sustain large hydrostatic pressures
without yielding, yield can be expected to depend on a critical value of the distor-
tional energy. This energy is found by subtracting the energy of the volume
change from the strain energy. Thus for an isotropic material this is:

L_ 2, 2, 2\_V 2 2 2
Cy +0, +0, E 6,0, +0,0, +0,0, |+ (T, + Ty, + Ty, ) |+

2E
—(1_2V (o, +0,+0 )2)—
6E X y z -
1+v 2 2 2 1
25-((6X —Gy) +(Gy —GZ) +(0Z —GX) )+%-(Tiy +1:)2(Z +r§z) (3.1)
For plane stress, the distortional energy thus is with 2G =E/(1 + v):
1+v
3_E( i—cxcy+6§+3rz) (3.2)

When o, oy and t are the nominal stresses of a material, having a reinforcement

in x and y direction that takes a part of the loading, then the distortional energy of

the matrix becomes:

l+v

3—E-((]—CX)G§ -0,0, +(1—cy)ci +3(1—ctx —cty)rz), (3.3)
where the reinforcement parts are subtracted from the total load. For the rein-

forcement, taking only normal force and shear, this is:

' E
Iy '(GZX+3T§) with: o, =| 2*-1| 0,0,
3E, E
where o, is the area of the reinforcement per unit area, giving;:
2
' E
cX:1+V . 1_£ .wi._a (3.4)
1+v | E, E

The other values of c; are analogous.

When the distortional energy is constant at yield then eq.(3.3) gives:
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(1-c, )0t —o,0, +(1-c, )0} +3(1-c, —c, )T =C (3.5)
For o, =1=0, this gives the yield stress in x-direction o, = X". In the same way
o,=Y',when 6, =1=0 and is t = Swhen o, =6, =0, giving the equation:
2 2
oy °c T
The Norris equation follows from eq.(3.6) when 2F, =1/X'Y'. This however is a

2

+ =l (3.6)

special value of 2F, that need not to apply in general.
For the special case that: ¢, =c,, =0, and when, as for concrete, it is assumed that

the reinforcement takes no shear, eq.(3.5) becomes:
o %%y O T _

2 a2 2t 2"
X 33 Y“ S
and because 3S* ~ X'Y', as applies for isotropy what is assumed for the cell walls
by Norris in his derivation and as also is measured, this equation becomes:

2

1 (3.7)

t—2t—=
Xv2 X'Y' Y 12 S2
giving the Norris equation as critical distortional energy equation of the matrix

2 2
oy _chy (0 T

1 (3.8)

when the reinforcement “flows” and thus only may carry a normal force.

At early failure of the matrix, the reinforcement carries the total load by the nor-
mal- and shear forces and the coupling term disappears and the equation gives the
apparent critical distortional energy of the reinforcement:

Lo LT
X2 y? s
being the older empirical Norris equation.

The Norris equations (3.8) and (3.9) give the possible extremes of F, between zero

1 (3.9)

()

-~
!

Figure 3.1. - Initial yield, von Mises criterion for wood.

and the maximal value. Although the Norris-equations are used for wood, they
only apply for materials with equal compression and tension strengths.

When these yield strengths are not equal, different critical distortional energies
will apply for tension and compression.
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When a straight loading line (proportional loading) intersects the yield criterion at
Oy, Oy, (both positive) in the first stress quadrant, it intersects the yield criterion

in the third quadrant at o,,, o, (both negative). Writing 6, =a+s,; o,, =b+s,

1
X 7/

Oy, =a-s,; 6,5, =b-s,, eq.(3.5) gives for positive stresses, with: 1 - ¢, = ¢, ', etc.:

c, '(a+sx)2 —(a+sx)-(b+sy)+cy '-(b+sy)2 +c,12 =C,

and for negative stresses:

c,'(a—s, )2 —(a—sx)-(b—sy)+cy '-(b—sy)2 +c1t=C,

Summation of both critical distortion energies C, and C,, gives the total energy of
both events and gives the collection or all critical points, thus gives the equation of
the yield surface, thus:

c s =88, +cC, " si +c,1t =C;,. (3.10)
Substitutionof s, = o,, - a and s, = o, -b, or:-s, =0o,, - a and-s, =0, -b,

leads to the general polynomial [1]:

2 6. o, © 2
Ox +&—&+2Flzcxcy+ . +—y——y+T—2=1 (3.11)
XX X X' YY" Y Y' S
or with 6, =¢,;0, =0, and T1=04:
Fo, +Eo, +F11012 +2K,0,0, + Fzzcsg + F66G§ =1 (3.12)

as the critical distortional energy criterion in the main planes determining first
yield. The derivation is of course not essentially different for an orthotropic rein-
forcement. Due to the system there is an equivalent slip of the reinforcement for
shear loading for wood and G is not coupled according to 2G = E/(1 + v) but a se-
parate value of G has to be maintained. This also has no influence on the deriva-
tion.

3.3 Hankinson equations

The Hankinson equations apply for the off-axis uniaxial strengths and has to sat-
isfy eq.(3.11) for initial yield. For the uniaxial tensile stress is:

6,=06,c0s’0  ©,=0,sin>0 Gy =G, cosOsin 0

Substitution of these stresses in eq.(3.11) gives eq.(2.14)

This initial yield equation, eq.(2.14), can be resolved into factors giving eq.(2.17),
what is the product of the Hankinson equation for tension and for compression.
As discussed before, this is possible because according to eq.(2.18):

2F, +1/8* = 1/X'Y +1/XY"

In the generalized Hankinson equation, eq.(2.19):

o, cos" 0 L O sin” 0 _
X Y

1
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is the exponent n =2 for the initial yield equation. Measured is also n = 2 for the
strengths in bending and in tension of clear wood, also for veneer and for shear in
the radial plane measured with the "Schereisen"-device. The measurements thus
indicate that also in the radial plane n =2 applies for initial yield. Forn # 2, as
may apply for compression, the extended Hankinson equations, eq.(2.20), apply.

3.4. Rankine criterion 25

The Hankinson equation (2.19) forn=2,

G, cos’ 0 Lo sin® 0 3
X Y
contains the maximum stress condition (or Rankine criterion) of failure for very
low and for high angles (see fig. 3.2).
For 0 in the neighbourhood of 6 =90°, eq.(3.13) is about:
G, sin” @ B
-y
the maximal stress criterion for tension perpendicular to the grain. This also ap-
plies down to e.g. 45°, because 1/X is of lower order with respect to 1/Y and thus
the difference of eq.(3.14) with eq.(3.13) is of lower order then. In the same way,
for very small values of 0, the ultimate tensile strength criterion in grain direction,
eq.(3.15) applies:

| (3.13)

1 (3.14)

l
12 o, 1 l {4 l ! ,
e cos2Q ! \ \
1.0 \‘ \\ Gt \
\ \
0.8 ‘
o _ 1 A=t
0.6 Y sin?0 e \O
! vt \1
0.4 * Ut 1
NS —~S " sinfcosp
0.2 i X
0'0 i T A Ll I L T "7’7‘ rr L i LS L v T r v L Yi
0 20 40 60 80 100

Grain angle

Figure 3.2. - Hankinson and Maximal stress criteria
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Figure 3.3. - Maximal stress failure conditions.

G, cos’ 0

X
For values of 6, where the first two terms of eq.(3.13) are equal or:
cos 0 /NX =sin6 N,
the deviations of eq.(3.14) and (3.15) from eq.(3.13) are maximal (50%). In the
neighbourhood of this value of 0 is:
(cosO NX -sin@/NY)2=0or: cos’0/X+sin’ 0/Y —2sin0cos0//XY =0
or with eq.(3.13):
c,sinB-cos® o, sinB-cosH :1

VXY /2 S

giving the ultimate failure criterion for shear by the fictive shear-strength:
S=v/XY /2.
It is easy to show that this value of S is the point of contact of the lines eq.(3.16)
and eq.(3.13). Although eq.(3.16) fits precisely at this point where tgf=vY /X,
the difference of equations (3.14) to (3.16) with eq.(3.13) is to high at their inter-
sects for application (see fig. 3.2). This also follows from figure 3.3 for wood and

=1 (3.15)

(3.16)

for other comparable polymers.
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3.5. Norris equations

The Norris equations follow from te yield equation, eq.(3.12), when compression
and tension strengths are equal: X=X’ and Y = Y’ and thus different equations
should be used in each stress quadrant with the strengths X,Y; X', Y; X, Y’; X', Y".
When this is done, fig. 3.4 shows that the Norris equations still do not apply.
The success of these equations follows from the uniaxial applications (in the first
and third quadrant) when the Hankinson equations apply.
After substitution of X=X’ and Y =Y’, the yield equation, eq.(2.14), can be re-
solved in factors, like eq.(2.17) as:
(Gt cos* 0 L0 sin® 0 _IJ'(Gt cos® 0 L O sin® @ +1] _0

X' Y' X' Y'

showing the Hankinson equations to apply and leading to:

cicos'0 N opsin® @ N o7 sin©” cos® 0 _
G y? X'y’

This is equal to the Norris-criterion:

| (3.17)

crcos' N opsin® @ B o} sin®” cos” 0 N o7 sin®” cos® 0
X 2 Y;2 X'Y' S2

when: 1/8* »3X'Y".

This value of S is measured and can be found in literature (see [1]), showing that

=1 (3.18)

the Norris equations are the same as the Hankinson equations for the uniaxial
stress case.
For tension (replacing X’ by X and Y’ by Y in eq.(3.18)), it follows in the same way
that S* = XY /3, that may be different from the value for compression, showing
that fictive values of S is needed in the other quadrants. Further, the yield criterion
eq.(3.12) is an ellipsoid, having a small, (or zero) slope with respect to the o, - axis
and thus a negligible F,. The centre of the ellipse in the 1 — 2 — plane is the point:
(X=X")/2; (Y -Y")/2). When the part of this ellipse in e.g. the compression —
compression quadrant has to be approximated by an ellipse with the centre at the
point (0,0), (as applies for the Norris equation), then E, of that ellipse has a pro-
nounced value. In the tension — compression quadrant the apparent F, even has
the opposite sign. An improvement of eq.(3.18) thus will be to have a free slope of
the ellipses and to use eq.(3.6) in stead as an extended Norris equation.
From eq.(3.17) it follows that:
cicos'® oisin*® o) sin6” cos’ O

x? oy g
when 1/S* #2X'Y"' in eq.(3.17), giving the older empirical Norris equation, that

(3.19)

has a zero F, and fits better than the later proposed equation (3.18), but still does

not fit in all quadrants (see fig. 3.4) because of the assumed equal compression and
tension strengths. Further in all four stress quadrants an other, fictive shear
strength has to be used.
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A: — - — - — The4 Norris eq.'s A of the 4 quadrants
B: ----- -+~ 4 Norris eq.'s B of the 4 quadrants
eq.(2.40) Pine

— — = = — Max. stress condition

- ANprris AinX,

——

Y

———amy . s . e o a—

G, - =
J 76 X2 XY  y2
Figure 3.4. - Norris equations for 6, =0.

It can be concluded that the Norris equations only can be applied for uniaxial
stress being equivalent to the Hankinson equations for initial yield.

Because the Norris equations in the general form are not right, they should not be
used any more.

3.6. Post yielding behaviour and system hardening

As mentioned before, the loading behaviour up to failure has to be described by
deformation kinetics [6]. There are several processes acting in wood. Early local
flow or stable micro-crack propagation may occur, while the main part of the ma-
terial is elastic and different inelastic strain rate equations are necessary depen-
ding on the loading type (tension, compression and shear) and loaded material
plane. Fig. 2.2 e.g. shows that plastic flow occurs at compression in the radial
plane, while in the tangential plane there is flow with hardening. The determining
loading behaviour near the ultimate state follows eq.(5.2.8) of [6]. The stress on the
specimen is: =K, (8/L-¢,),

where K, is the total stiffness of machine and specimen; &, the crosshead dis-
placement and L the equivalent length of specimen and machine and ¢, the ine-

lastic strain. At a constant crosshead rate § =c¢, is:

do LK
———=K,——1¢,=K,-K,;(A"+B"¢, )-sinh(¢c(1-Ce 3.20
d(S/L) 1 c v 1 1( v) (d) ( v)) ( )
As shown in [1], first flow in fig. 2.2 follows: F', o, +F,, o; =1. Then hardening
occurs. The steepness of the compression hardening curve, after first flow, de-
pends on the orientation of the loaded plane. This means that the value of the
hardening constant C in eq.(3.20) depends on this orientation and should be
measured. Because there is no yield drop, A" is much higher than B"e,. After

some mutual equal plastic deformation the stresses are about the same in all
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planes, independent of the orientation and the ultimate behaviour becomes quasi
isotropic in the transverse direction, indicating yield of the isotropic matrix with
further strong hardening by confined dilatation, depending on the type of test.
For tension, the constant C of eq.(3.20) is small and negligible. This means that the
ultimate state in a test occurs at the maximal value of o, thus when:
do/d(8/L)=0, giving:

2
~In| —— 3.21
¢Gu {A11+B||8V,UJ ( )

and, A" and B" as function of the orientation should be determined. However, as
mentioned, the measured values of 6, can be given as a tensor polynomial for

tension perpendicular to the grain in this case, that can be regarded as a polyno-
mial expansion of eq.(3.21).
Because of the small value of ¢, the behaviour also can be regarded as quasi elas-

tic up to failure, for tension perpendicular to the grain. This also is applied in prac-
tice for tension in grain direction with a reduced modulus of elasticity.

The sometimes quite different reported test results often can be explained by early
instability of the test-system for low strength values, or for high values by con-
fined dilatation that may have more or less influence depending on the type of
test. This may lead to structure dependent strengths.

Hardening in tension and shear can be explained by stable micro-crack propaga-
tion up to long crack lengths. This is caused by strong layers that cannot be passed
by the crack and propagation is not in the worst direction but bends off in layer
direction causing the hardening effect. Based on this oriented micro-cracks exten-
sion in grain direction the parabolic fracture mechanics Wu-interaction equation
for mixed I-II mode fracture is derived in [9]. It also appears that this mechanism
explains the ultimate failure criterion for wood with small defects. The polynomial
third order terms for shear represent this parabolic Wu-equation. But also the
third order terms for normal stresses contain this influence because there only is
an apparent pure normal stress biaxial loading without shear in wood with de-
fects. This is discussed before (and in [7]). The equations for timber with defects
are in principle derivable from the clear wood equations by analyzing the stresses
around knots, cracks etc. Descriptive, by the polynomial approach, it is also possi-
ble to regard the many possible complicated stress states leading to failure in tim-
ber with defects, when loaded in a main direction as the strength by this mean
stress in that direction. In that case compression perpendicular to the grain has a
strong influence on the axial strengths because without this compression shear
with tension perpendicular would be determining and now splitting e.g. around
knots and crack propagation (effective shear) is prevented.

Because by grain- and stress- deviation there will always be shear involved in fail-
ure and the combined shear strength is determining. The influence of shear with
normal force is present in the third order terms for the apparent loading case of
the normal stresses only.
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As discussed before the hardening is not always present in all tests and a lower
bound should be used where also F, can be neglected. Thus for plane stress is:

Fo, +Fo, +F,0; +F,05 +Fof =1 (3.22)
in all cases, what is more easy to use than the not valid Norris criteria.
In general eq.(3.23) applies for the 3-axial stress state, as also is discussed in [1]:

11 11 or o5 + 63 +20;
6| =——— |+(o,+03) | =——— |+——+2F, (0,0, +t0,0;5 )+ —F"—+
I(X X'j ( 2 3) (Y Y'j XX 12( 192 1 3) vY'

05+ _ (3.23)

In this equation o, is the rolling shear and, o, and o5 are the normal stresses in
the tangential and radial planes. In this equation too, F, =0 can be assumed.

It thus can be concluded that the critical distortional energy criterion, reduced
when F, =0, to the critical strain energy criterion, also can be used as a lower

bound of the ultimate failure condition.

4. CONCLUSIONS

- The tensor polynomial failure criterion can be regarded as a polynomial expan-
sion of the real failure criterion.

- At initial yield, the minimum energy principle leads to the critical distortional
energy principle. It is shown here and in [1], that the general second order poly-
nomial represents this principle for an orthotropic material. This criterion thus is a
safe lower bound for failure.

- In transverse direction, a second order polynomial eq.(2.40) is sufficient to des-
cribe the strength. For compression perpendicular to the grain, the strength can be
defined as the ultimate stress after flow and some amount of strain hardening
causing a directional independent, quasi isotropic, behaviour. This also applies for
tension perpendicular to the grain because the only local higher tensile strength of
the radial plane will not be determining in practice.

- For the longitudinal strength, also a second order polynomial (with F, =0),

eq.(2.40), applies as yield criterion. When early failure instability occurs in the test,
at initial crack extension, as for instance in the oblique-grain tension test, or for
shear with compression in the “Schereisen” test, there are no higher order terms,
also not in the radial plane. Higher order terms thus are due to hardening effects
depending on the type of test that may provide confined dilatation or stable or
unstable crack propagation after initial yield.

- The initial yield equation for uniaxial loading can be resolved into factors con-
taining the Hankinson equation for tension and compression for n = 2. Thus when
the Hankinson parameter n in eq.(2.19) is n = 2, in tension and in compression, all
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higher order terms are zero. This may apply for clear wood, depending on the
type of test. It also is probable that this is a general property for timber [11].

- The yield equation for uniaxial loading, containing higher order terms, can be
resolved in factors of the extended Hankinson equations, eq.(2.36) for tension and
compression when n in eq.(2.19) is different from n = 2.

- For wood, at least in the radial plane, after hardening in a stable test, the com-
bined longitudinal normal stress - shear strength depends on the third order coup-
ling term F,, giving the parabolic Mohr- or Wu- equation of fracture. This is theo-
retically explained in [9] by micro-crack propagation in grain direction. This in-
crease of the shear strength is an equivalent hardening effect due to crack arrest in
the worst direction by strong layers, causing failure only to be possible by longi-
tudinal crack propagation. It is shown that the increase of the shear strength, by
compression perpendicular to the shear plane, is not due to Coulomb friction, be-
ing small for wood.

- Because of the grain deviations from the regarded main directions, there always
is combined shear-normal stress loading in the real material planes where eq.(2.32)
applies and F,, probably is an apparent value caused by E,, of the real inclined

material planes.
- Therefore, for wood in longitudinal compression in the radial plane this micro-
crack failure mechanism is determining, giving high values of E,;, and F,,, close

to their bounds of ¢ = 0.8 to 0.9.
- The same as found for E,¢, as function of o,, is to be expected for F, as function

of o,. This is given in fig. 2.7.
- For wood in longitudinal tension, F,, F,, andF,, are zero and only E, and
E,¢¢ remain in the radial plane as higher order terms, showing an other type of

failure than for longitudinal compression.
For longitudinal compression, at o, =0, equivalent hardening by crack arrest,

(high E,,) as well hardening by confined dilatation (showing a negative F,, and
EF,) may occur. This last type of hardening occurs in the torsion tube test, because
the negative F,, and F,, predict the compression peak of fig. 2.4 in the oblique

grain test, that does not occur by the lack or hardening in the oblique grain test.
This also will be so for structural elements and the lower bound criterion with
only E and F,, (and zero F,, F,, and F,,) is probably more reliable for longi-

tudinal compression failure in the radial plane. In the tangential plane also F
and F,., are zero, making the second order criterion determining.

- In general thus eq.(3.23) applies for the 3-axial stress state, as is discussed in [1]:

2 2 2 2 2 2
Gl(l_ij+(02+c3)'(i_Lj+ Op_,0y*+05%20; 05165

X X Y Y') XX' YY' q2
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where o, is the rolling shear and o, and o, are the normal stresses in the tangen-
tial and radial planes and where it is assumed that F, =0 as applies for longitudi-

nal tension.

- Equations (3.38) and (2.39) can be used for analyzing test data. Because it is
questionable that the hardening by confined dilatation or crack arrest may occur
in all circumstances, because it depends on the type of test, the hardening con-
tained by the third order terms should be omitted for a general application.

- Therefore the second order polynomial, eq.(3.22) or eq.(2.40), for plane stress:
9,0 0,0 O O O
$ X X' XX''Y Y YY
should be used for initial yield and for ultimate failure for the Codes and as initial
yield equation, it applies for the 5th percentile of the strength as well.

- The loading curve up to yield and failure should be described by deformation
kinetics [6].

- It is shown that the quadratic form of the tensor-polynomial yield criterion
represents the critical distortional energy principle for initial yield and the Han-
kinson and Norris equations may represent special forms of this principle.

- Only this derived extension of the von Mises criterion contains the, for ortho-

tropic materials, necessary independent value of the interaction constant as F,

and accounts for different tension- and compression strengths and is able to give
the strength in any direction in the strength tensor form.

- The ultimate stress principle for failure, eq.(3.14), (3.15) and (3.16), does not ap-
ply for the general loading case and only applies locally and approximately for
only uniaxial loading. These equations also are predicted by the fracture mechan-
ics singularity method [9], showing thus that this method, that always is applied
in fracture mechanics for all materials, is not right and should not be used.

- The Norris equations are not generally valid and are only for uniaxial loading
identical to the Hankinson equation with n = 2, when the right (mostly) fictive
shear-strength is used. This equation thus should not be used any more.

- There thus is no reason to not apply this exact general criterion, also for the fu-
ture Codes, for all cases of combined stresses. Only this criterion gives the possi-
bility of a definition of the off-axis strength of anisotropic materials.
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